Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4856, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184426

RESUMO

Over the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response. To do this, total mRNA of all developmental stages was sequenced on an Illumina platform, followed by a de novo assembly, gene annotation and RNAi-related gene identification. Once RNAi-related genes were identified, nuclease activities in hemolymph were investigated through an ex vivo assay. To test the functionality of the siRNA machinery, E. heros adults were microinjected with ~28 ng per mg of insect of a dsRNA targeting the V-ATPase-A gene. Mortality, relative transcript levels of V-ATPase-A, and the expression of the genes involved in the siRNA machinery, Dicer-2 (DCR-2) and Argonaute 2 (AGO-2), were analyzed. Transcriptome sequencing generated more than 126 million sequenced reads, and these were annotated in approximately 80,000 contigs. The search of RNAi-related genes resulted in 47 genes involved in the three major RNAi pathways, with the absence of sid-like homologous. Although ex vivo incubation of dsRNA in E. heros hemolymph showed rapid degradation, there was 35% mortality at 4 days after treatment and a significant reduction in V-ATPase-A gene expression. These results indicated that although sid-like genes are lacking, the dsRNA uptake mechanism was very efficient. Also, 2-fold and 4-fold overexpression of DCR-2 and AGO-2, respectively, after dsRNA supply indicated the activation of the siRNA machinery. Consequently, E. heros has proven to be sensitive to RNAi upon injection of dsRNA into its hemocoel. We believe that this finding together with a publically available transcriptome and the validation of a responsive RNAi machinery provide a starting point for future field applications against one of the most important soybean pests in South America.


Assuntos
Perfilação da Expressão Gênica/veterinária , Hemípteros/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hemípteros/genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Controle de Insetos , Proteínas de Insetos/genética , Anotação de Sequência Molecular , Análise de Sequência de RNA/veterinária , América do Sul
2.
Front Physiol ; 10: 794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316391

RESUMO

RNA interference (RNAi) technology has been used in the development of approaches for pest control. The presence of some essential genes, the so-called "core genes," in the RNAi machinery is crucial for its efficiency and robust response in gene silencing. Thus, our study was designed to examine whether the RNAi machinery is functional in the South American (SA) fruit fly Anastrepha fraterculus (Diptera: Tephritidae) and whether the sensitivity to the uptake of double-stranded RNA (dsRNA) could generate an RNAi response in this fruit fly species. To prepare a transcriptome database of the SA fruit fly, total RNA was extracted from all the life stages for later cDNA synthesis and Illumina sequencing. After the de novo transcriptome assembly and gene annotation, the transcriptome was screened for RNAi pathway genes, as well as the duplication or loss of genes and novel target genes to dsRNA delivery bioassays. The dsRNA delivery assay by soaking was performed in larvae to evaluate the gene-silencing of V-ATPase, and the upregulation of Dicer-2 and Argonaute-2 after dsRNA delivery was analyzed to verify the activation of siRNAi machinery. We tested the stability of dsRNA using dsGFP with an in vitro incubation of larvae body fluid (hemolymph). We identified 55 genes related to the RNAi machinery with duplication and loss for some genes and selected 143 different target genes related to biological processes involved in post-embryonic growth/development and reproduction of A. fraterculus. Larvae soaked in dsRNA (dsV-ATPase) solution showed a strong knockdown of V-ATPase after 48 h, and the expression of Dicer-2 and Argonaute-2 responded with an increase upon the exposure to dsRNA. Our data demonstrated the existence of a functional RNAi machinery in the SA fruit fly, and we present an easy and robust physiological bioassay with the larval stages that can further be used for screening of target genes at in vivo organisms' level for RNAi-based control of fruit fly pests. This is the first study that provides evidence of a functional siRNA machinery in the SA fruit fly.

3.
Arq. Inst. Biol ; 86: e0312019, 2019. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1046020

RESUMO

The ecdysone receptor, naturally activated by steroidal hormones, is a key protein for molting and reproduction processes of insects. Artificial activation of such receptor by specific pesticides induces an anomalous process of ecdysis, causing death of insects by desiccation and starvation. In this paper, we established a protocol for screening agonistic molecules towards ecdysone receptor of insect cells line S2 (Diptera) and Sf9 (Lepidoptera), transfected with the reporter plasmid ere.b.act.luc. Therefore, we set dose-response curves with the ecdysteroid 20-hydroxyecdysone, the phytoecdysteroid ponasterone-A, and tebufenozide, a pesticide belonging to the class of diacylhydrazines. In both cell lines, the median effective concentration values on reporter gene induction (EC50) of ponasterone-A was the smallest, meaning the most active agonist molecule. In Sf9 cells, tebufenozide had as smaller EC50 than 20-hydroxyecdysone, indicating the high agonistic capability and lepidopteran specificity. The protocol established in this study can be useful for a quick screening and rational research of site-specific pesticides.(AU)


O receptor de ecdisona, naturalmente ativado por hormônios esteroidais, é uma proteína-chave nos processos de muda e reprodução de insetos. A ativação artificial desse receptor por meio de pesticidas específicos induz um processo de ecdise anômala, levando o inseto à morte por dessecação e inanição. Neste trabalho, foi estabelecido um protocolo para a triagem de moléculas agonistas em relação ao receptor de ecdisona nas linhagens celulares responsivas S2 (Diptera) e Sf9 (Lepidoptera), transfectadas com o plasmídeo repórter ere.b.act.luc. Para tanto, curvas de dose-resposta foram estabelecidas com o ecdisteroide 20-hidroxiecdisona, o fitoecdisteroide ponasterona-A e tebufenozida, um pesticida pertencente à classe das diacilhidrazinas. Em ambas linhagens celulares, os valores médios de concentração efetiva para indução gênica (EC50) ponasterona-A foram menores, significando que este é o agonista mais potente. Em células Sf9, a tebufenozida apresentou EC50 menor que a 20-hidroxiecdisona, indicando uma alta atividade agonista e especificidade deste inseticida a lepidópteros. O protocolo estabelecido neste trabalho pode ser utilizado para uma rápida triagem e busca racional de pesticidas de alvo bioquímico específico.(AU)


Assuntos
Plasmídeos , Muda , Insetos , Praguicidas , Ecdisterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...